DPV-001 an autophagosome-enriched cancer vaccine in phase II clinical trials contains 25 putative cancer antigens, DAMPS, HSPS and agonists for TLR 2, 3, 4, 7 and 9
نویسندگان
چکیده
Generation of a therapeutic immune response against a diverse set of antigens expressed by a patient’s cancer is a central goal of cancer immunotherapy. This goal is important because diverse responses may prevent escape of antigen loss variants. To accomplish this goal we have developed tumor-derived autophagosome-enriched vaccines, “DRibbles”, that sequester a complex mixture of proteins including cancer antigens and damage-associated molecular pattern molecules (DAMPs). In preclinical studies, combination immunotherapy with this vaccine approach provides significant protection from tumor challenge and therapeutic efficacy against established tumors. DRibble vaccines are superior to whole tumor vaccines in both protection and therapy studies, and demonstrated efficacy even when used across a complete MHC mismatch, opening the way for a clinical off-the-shelf cancer vaccine. UbiVac has produced an allogeneic DRibble vaccine (DPV-001) from two human NSCLC cell lines UbiLT3 (non-specific histopathology) and UbiLT6 (adenocarcinoma-like) that is currently used in a phase II trial for definitively treated stage IIIA/B NSCLC. Microarray analysis was performed on the cells at time of vaccine production and the vaccine was characterized by western blot, flow cytometry and liquid chromatography tandem mass spectrometry. Over 25 cancer-associated proteins have been identified in the DPV-001 vaccine including nine from the NCI’s list of prioritized cancer antigens. Additionally found in this vaccine are multiple DAMPs, including S100A8, nucleolin, calreticulin, HMGB1, HSP70, HSP90, DNAs and RNAs. UbiLT3 DRibbles but not whole cell irradiated vaccine potently stimulates TLR 2, 3, 4, 7, and 9. Since many previously identified cancer antigens are created by genomic mutations and rearrangements, we performed exome sequencing of UbiLT3 and UbiLT6 and are searching for epitopes which could help break tolerance and improve vaccine efficacy. Together these data document that the DPV-001 vaccine contains antigens relevant for immunotherapy of cancer. In addition to NSCLC, we, and our collaborators, are exploring the application of this vaccine for the immunotherapy of colon, prostate and HNSCC.
منابع مشابه
Immunoinformatics Design of a Multi-epitope-based Vaccine Against Colorectal Cancer
Background: Bioinformatic approaches for designing vaccines have become a promising alternative to conventional methods. We herein designed a multi-epitope-based vaccine against colorectal cancer (CRC). Methods: Used peptides in the CRC vaccines were retrieved from databases of PubMed, Web of Science, Google Scholar, and Clinical trials. The adjuvants of Mycobacterial heparin-binding hemagglut...
متن کاملCross-sectional and longitudinal analysis of cancer vaccination trials registered on the US Clinical Trials Database demonstrates paucity of immunological trial endpoints and decline in registration since 2008
INTRODUCTION Cancer vaccination has been researched as a means of treating and preventing cancer, but successful translational efforts yielding clinical therapeutics have been limited. Numerous reasons have been offered in explanation, pertaining both to the vaccine formulation, and the clinical trial methodology used. This study aims to characterize the tumor vaccine clinical trial landscape q...
متن کاملTumor-derived autophagosome vaccine: mechanism of cross-presentation and therapeutic efficacy.
PURPOSE We previously reported that autophagy in tumor cells plays a critical role in cross-presentation of tumor antigens and that autophagosomes are efficient antigen carriers for cross-priming of tumor-reactive CD8(+) T cells. Here, we sought to characterize further the autophagosome-enriched vaccine named DRibble (DRiPs-containing blebs), which is derived from tumor cells after inhibition o...
متن کاملCharacterizing the immunoprofile and endogenous immune response to squamous cell carcinomas of the head and neck to guide development of effective immunotherapy strategies
Squamous cell carcinoma of the head and neck (HNSCC) is the 6 leading cause of cancer by incidence worldwide with approximately 600,000 new cases per year. Unfortunately, only 40-50% of these patients will survive for 5 years. In order to study the immune response in patients with this disease we have developed a HNSCC tumor bank to compliment our Oral, Head and Neck Cancer Program. This tumor ...
متن کاملWhole Tumor Cell Vaccine Adjuvants: Comparing IL-12 to IL-2 and IL-15
Cancer immunotherapy (passive or active) involves treatments which promote the ability of the immune system to fight tumor cells. Several types of immunotherapeutic agents, such as monoclonal antibodies, immune checkpoint inhibitors, non-specific immunomodulatory agents, and cancer vaccines are currently under intensive investigation in preclinical and clinical trials. Cancer vaccines induce pe...
متن کامل